The Corporate Origins of Open Source

Thomas Haigh

The Haigh Group/ University of Wisconsin, Milwaukee

> 4S, Vancouver, November 2006

Structure of Talk

- 1. Review of canonical accounts of the origins of open source/free software
 - Linus Torvalds and Linux
 - Raymond Stallman and GNU
 - The Hacker Culture and Bell Labs
- 2. Examination of the role of the IBM SHARE scientific user group in the 1950s
 - Part of larger project on mathematical software
- 3. Some preliminary conclusions

1: Origins of Open Source Software – Three Fables

Open Source Idea?

• The **basic idea behind open source** is very simple: When programmers can read, redistribute, and modify the source code for a piece of software, the software evolves. People improve it, people adapt it, people fix bugs.

From OpenSource.org homepage

 "Open Source" concept attributed to 1998 meeting, Eric S. Raymond

Bazaar Model

- Characteristics include
 - Users as co-developers
 Projects start with personal
 - problems to solve
 - Users debug systems "many eyes make bugs shallow"
 - Early and frequent releases
 - High modularization
 - A "benevolent dictator" to lead project

Version 2: MIT, 1983

- Richard Stallman was respected MIT "hacker"
 Author of EMACS editor
- Since 1984 Stallman Coordinates GNU project
 - GNU is Not Unix (recursive name)
 - Intended to produce
- open, free version of Unix
- "Free as in speech... not beer"

GNU's Free Software Definition

- The freedom to run the program, for any purpose (freedom 0).
- The freedom to study how the program works, and adapt it to your needs (freedom 1). Access to the source code is a precondition for this.
- The freedom to redistribute copies so you can help your neighbor (freedom 2).
- The freedom to improve the program, and release your improvements to the public, so that the whole community benefits (freedom 3). Access to the source code is a precondition for this.

The Hacker Ethic

- Access to computers... unlimited and total
- All information should be free
- Mistrust authority promote decentralization
- Hackers should be judged by their hacking...
- You can create beauty and art on a computer
- Computers can change your life for the better From ch. 2 of Hackers, by Steven Levy,

Summary of 3 Conventional Views

- Stress
 - Hacker culture and ideological commitments
 - Unpaid enthusiast virtuosos
 - Charismatic individuals
 - Novel licensing arrangements
- All about operating systems

A New Origin Story

- Scientific software libraries
- 1950s
- No concern with licensing arrangements
- Motivated by pragmatic commercial interests
 Avoidance of duplicated efforts on generic programs
 - To free up resources for areas of proprietary interests

2: Mathematical Software and Open Source

Scientific Computing

- Original function of early machines
 Harvard Mark I, ENIAC

 - Source of the term "computer"
- Many applications are concerned with modeling natural or man made systems
 - Hydrogen bomb physics
 - Fluid Dynamics of air for aerospace
 - Celestial mechanics for space navigation

Early Needs

- Initially: very basic assembly language subroutines
 - Multiplication, square root, binary to decimal, floating point simulation, etc.
- FORTRAN (1956) covers basics, but plenty of challenges left
 - Each computer center is likely to need routines for
 - Linear algebra and matrix manipulation
 - Ordinary and Partial Differential Equation solvers
 Special and Elementary functions
 - Special and Elementary function
 Curve fitting and least squares
 - Fast Fourier Transformation

3: SHARE and Mathematical Software

IBM 701/704/709

- Large, "first generation" machines of 1950s Worth approximately \$2
- million Designed for technical
- computation Early users dominated by
- Southern California aerospace firms Cold war context
- Many employees for each computer installation

704 at LLNL, 1956

SHARE IBM User Group

- SHARE founded 1956
 - Cooperative group for users of large IBM computers
 - Discussions begin among IBM 701 users
 - SHARE represents "large" IBM scientific machine users
 - Representatives from each installation (52 by end of 1956)
 - Intended to "share" programs, expertise, experiences and best practices
 - Lobbying of IBM to alter machines or policies

SHARE Software Library Routines contributed by user sites

- Reproduction and catalog handled by IBM
- Classification scheme developed to organize
- Contributors responsible for maintenance
- List posted of routines devised & desired

SHARE REFERENCE MANUA Errors detected in material distributed. As soon as a SLERE member detects an error buted by the SLUEE Secretary or by IIM as bution, he has the obligation of correspon the origizator of the material, and sendin pondence to the Secretary. The originator bility of taking amcroarizate action and Ad tor of the material, and sending a copy the Secretary. <u>The originator then has</u> Aking appropriate action and distribution sible, through the Secretary or IIM. T

SHARE Practices

- Standardization needed to share code and . practices
- Standardize machine configuration
- Setting of switches, control panels, etc Standardize system
- software
 - Assembler and utility programs (not supplied by IBM)
 - Leads to big project to create "Share Operating System"
- XF A (Adopted February D5, 1958 at DBAR X. Eshodiel in report of Stand Committee passed out to members in Washington. Flansed to be redistrib in SUD very shortly.) 1944, No. 1 Symbolis Card and Coling Form 1954, No. 2 Minary Card. (Column Minary is Stand Std. No. 3 Over-punches
 Mat., They.
 New Forest

 Mat., They.
 Hold Chains Instein

 Mat., They.
 Solid Chains Instein

SSD

- Mechanism for communication between meetings
 - Mailing of large bundles of assorted materials
 - Committee reports
 - Drafts for comments
 - Letters, inquiries and responses Including bug reports
- Also microfilms of source code for programs

Packaging of Mathematics

- Many routines are for mathematical functions
 - Substantial duplication and overlap in contributed routines
 - Quality issues
- Importance of tacit knowledge
 - Limits use, causes support issues
 - "Black boxing" of mathematical procedures

SHARE Labor

- Installation reps are senior figures
 - Responsible for design and specification
 - Commit employees of their firms to develop code
- Economy of effort in developing generic routines
 - Driven by economics save time and money
 - No proprietary advantage in cosine routine

SHARE Structure

- Committees to manage particular projects
 - Mathematical software is one important area
 - Subcommittees for particular projects

 Art 9, 10

 Barriel March 10
 Barriel 10

 Barriel March 10
 <td

Pare Ist 1

SHARE and the Four Freedoms

- Freedom to run YES
- Freedom to study and adapt source code -YES
- Freedom to redistribute YES
 Pretty much all 704/9/90 were members
- Freedom to improve and release to the public – YES

Similarities in Practices

- Ad-hoc collaboration groups for specific projects
 Some effort at modular code architecture
- Mechanisms to share and respond to bug reports
- Standards for coding and configuration to facilitate collaboration
- Open circulation of proposals and design documents
 - "Indoctrination" into culture

Challenges to SHARE

- Problems develop in open source model
- See Akera "The Limits of Voluntarism", T&C, 2001
 - Following problems with the "SHARE Operating System" project the writing of system software migrates to IBM
- But mathematical software largely doesn't
 - SHARE is main distribution mechanism until early 1970s
 - Large labs rely on own code libraries

4: Concluding Ponderings

Commercial Origins of Open Source Practices in 1950s

- To recap, by 1956 we already have
 - All formal characteristics of "free" software
 - Many practices of modern open source development
- But not the ideology of free software
 Seen as pragmatic actions, economically driven sharing

Hidden Commonality

- Shared engineering culture?
 - 1950s MIT Hackers
 - 1950s Aerospace engineering computing groups
- Seek to solve tasks in technically efficient manner
 - Avoid needless duplication of work
 - Provide tools to people who need them

Shows need for Separation of Ideology and Practice

- Open source practices are older, more widespread than open source movement, so...
 - How important is the ideology?
 - Is selective use open source by big firms (IBM etc) the exception or the rule?
- How important are scientific norms to open source practices?
 - Publication and sharing of data
 - Goes back to 17th century gentlemen