
1

The Corporate Origins of
Open Source

Thomas Haigh

The Haigh Group/
University of Wisconsin, Milwaukee

4S, Vancouver,
November 2006

Structure of Talk

1. Review of canonical accounts of the origins of
open source/free software

• Linus Torvalds and Linux
• Raymond Stallman and GNU
• The Hacker Culture and Bell Labs

2. Examination of the role of the IBM SHARE
scientific user group in the 1950s

• Part of larger project on mathematical software
3. Some preliminary conclusions

1: Origins of Open Source
Software – Three Fables

Open Source Idea?

The basic idea behind open source is
very simple: When programmers can read,
redistribute, and modify the source code
for a piece of software, the software
evolves. People improve it, people adapt
it, people fix bugs.

From OpenSource.org homepage
“Open Source” concept attributed to 1998
meeting, Eric S. Raymond

Version 1: Finland, 1991

Linus Torvalds sends a
message to the
comp.so.minix
newsgroup…

Linux was project of Linus
Torvalds

Begun in 1991 as
undergrad in Finland

Now a leading server
operating system

From:
torvalds@klaava.Helsinki.FI
(Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: Gcc-1.40 and a
posix-question
Message-ID:
<1991Jul3.100050.9886@klaava
.Helsinki.FI>
Date: 3 Jul 91 10:00:50 GMT

Hello netlanders,
Due to a project I'm working
on (in minix), I'm
interested in the posix
standard definition. Could
somebody please point me to
a (preferably)
machine-readable format of
the latest posix rules? Ftp-
sites would be
nice.

Power of the Internet

Similar recent success for
Firefox browser
The story

Genius young programmer
starts visionary project
Promising but incomplete
versions posted on internet
attract community of
user/developers
A virtuous circle leads to
exponential growth

2

Bazaar Model

Characteristics include
Users as co-developers

Projects start with personal
problems to solve
Users debug systems – “many
eyes make bugs shallow”

Early and frequent releases
High modularization
A “benevolent dictator” to
lead project

Version 2: MIT, 1983

Richard Stallman was
respected MIT “hacker”

Author of EMACS editor
Since 1984 Stallman
Coordinates GNU project

GNU is Not Unix
(recursive name)
Intended to produce
open, free version of Unix

“Free as in speech… not
beer”

GNU’s Free Software Definition

The freedom to run the program, for any
purpose (freedom 0).
The freedom to study how the program works,
and adapt it to your needs (freedom 1). Access
to the source code is a precondition for this.
The freedom to redistribute copies so you can
help your neighbor (freedom 2).
The freedom to improve the program, and
release your improvements to the public, so that
the whole community benefits (freedom 3).
Access to the source code is a precondition for
this.

Version 3: Hacker Culture

Stallman was
propagating and
defending a tradition
going back to the late
1950s at MIT
Propagated and
revitalized by

Personal computes
Widespread internet
access

The Hacker Ethic

Access to computers… unlimited and total
All information should be free
Mistrust authority – promote decentralization
Hackers should be judged by their hacking…
You can create beauty and art on a computer
Computers can change your life for the better

From ch. 2 of Hackers, by Steven Levy,

Summary of 3
Conventional Views

Stress
Hacker culture and ideological commitments
Unpaid enthusiast virtuosos
Charismatic individuals
Novel licensing arrangements

All about operating systems

3

A New Origin Story
Scientific software libraries
1950s
No concern with licensing arrangements
Motivated by pragmatic commercial interests

Avoidance of duplicated efforts on generic
programs
To free up resources for areas of proprietary
interests

2: Mathematical Software and
Open Source

Scientific Computing

Original function of early machines
Harvard Mark I, ENIAC
Source of the term “computer”

Many applications are concerned with
modeling natural or man made systems

Hydrogen bomb physics
Fluid Dynamics of air for aerospace
Celestial mechanics for space navigation

Mathematical Libraries
Produced internally within
computer centers

First example for EDSAC
circa 1950

Invented along with
subroutine
Discussed in 1951
programming text
Included Runge-Kutta
differential equation routine

First US grant to support
development may be for
ILLIAC

Numerical Analysis funding
from ONR 1950-1958

Subroutine library 1955

Early Needs
Initially: very basic assembly language
subroutines

Multiplication, square root, binary to decimal, floating
point simulation, etc.

FORTRAN (1956) covers basics, but plenty of
challenges left

Each computer center is likely to need routines for
Linear algebra and matrix manipulation
Ordinary and Partial Differential Equation solvers
Special and Elementary functions
Curve fitting and least squares
Fast Fourier Transformation

3: SHARE and Mathematical
Software

4

IBM 701/704/709

Large, “first generation”
machines of 1950s

Worth approximately $2
million

Designed for technical
computation

Early users dominated by
Southern California
aerospace firms
Cold war context

Many employees for each
computer installation 704 at LLNL, 1956

SHARE IBM User Group

SHARE founded 1956
Cooperative group for users of large IBM computers

Discussions begin among IBM 701 users
SHARE represents “large” IBM scientific machine users
Representatives from each installation (52 by end of 1956)

Intended to “share” programs, expertise, experiences
and best practices

Lobbying of IBM to alter machines or policies

SHARE Software Library
Routines contributed by user sites

Reproduction and catalog handled by IBM
Classification scheme developed to organize
Contributors responsible for maintenance

List posted of routines devised & desired

SHARE Practices
Standardization needed
to share code and
practices
Standardize machine
configuration

Setting of switches, control
panels, etc

Standardize system
software

Assembler and utility
programs (not supplied by
IBM)
Leads to big project to
create “Share Operating
System”

SSD
Mechanism for communication between
meetings

Mailing of large bundles of assorted materials
Committee reports
Drafts for comments
Letters, inquiries and responses

Including bug reports

Also microfilms of source code for
programs

Packaging of Mathematics

Many routines are for mathematical
functions

Substantial duplication and overlap in
contributed routines
Quality issues

Importance of tacit knowledge
Limits use, causes support issues
“Black boxing” of mathematical procedures

5

SHARE Labor

Installation reps are senior figures
Responsible for design and specification
Commit employees of their firms to develop
code

Economy of effort in developing generic
routines

Driven by economics – save time and money
No proprietary advantage in cosine routine

SHARE Structure

Committees to
manage particular
projects

Mathematical
software is one
important area
Subcommittees
for particular
projects

SHARE and the Four Freedoms

Freedom to run – YES
Freedom to study and adapt source code -
YES
Freedom to redistribute – YES

Pretty much all 704/9/90 were members

Freedom to improve and release to the
public – YES

Similarities in Practices
Ad-hoc collaboration groups
for specific projects

Some effort at modular code
architecture

Mechanisms to share and
respond to bug reports
Standards for coding and
configuration to facilitate
collaboration
Open circulation of
proposals and design
documents

“Indoctrination” into culture

Challenges to SHARE
Problems develop in open source model
See Akera – “The Limits of Voluntarism”,
T&C, 2001

Following problems with the “SHARE
Operating System” project the writing of
system software migrates to IBM

But mathematical software largely doesn’t
SHARE is main distribution mechanism until
early 1970s

Large labs rely on own code libraries

4: Concluding Ponderings

6

Commercial Origins of
Open Source Practices in 1950s

To recap, by 1956 we already have
All formal characteristics of “free” software
Many practices of modern open source
development

But not the ideology of free software
Seen as pragmatic actions, economically
driven sharing

Hidden Commonality

Shared engineering culture?
1950s MIT Hackers
1950s Aerospace engineering computing
groups

Seek to solve tasks in technically efficient
manner

Avoid needless duplication of work
Provide tools to people who need them

Shows need for
Separation of Ideology and Practice

Open source practices are older, more
widespread than open source movement, so…

How important is the ideology?
Is selective use open source by big firms (IBM etc)
the exception or the rule?

How important are scientific norms to open
source practices?

Publication and sharing of data
Goes back to 17th century gentlemen

