SHARE and the Origins of Open Source Software: 1953-1972

Thomas Haigh Leicester, August 16, 2005

Open Source Idea?

- The **basic idea behind open source** is very simple: When programmers can read, redistribute, and modify the source code for a piece of software, the software evolves. People improve it, people adapt it, people fix bugs.
- From OpenSource.org homepage
- "Open Source" concept attributed to 1998 meeting, Eric S. Raymond

Structure of Talk

- 1. Review of canonical accounts of the origins of open source/free software
 - Linus Torvalds and Linux
 - Raymond Stallman and GNU
 - The Hacker Culture and Bell Labs
- Examination of software projects in the mathematical software field
 SHARE in the 1950s onward
- 3. Some preliminary conclusions

1: Origins of Open Source Software – Three Fables

Power of the Internet

- Similar recent success for Firefox browser
- The story
 - Genius young programmer starts visionary projectPromising but incomplete
 - Promising but incomplete versions posted on internet attract community of user/developers
 - A virtuous circle leads to exponential growth

Bazaar Model

- Characteristics include
 - Users as co-developers
 Projects start with personal
 - problems to solve
 - Users debug systems "many eyes make bugs shallow"
 - Early and frequent releases
 - High modularization
 - A "benevolent dictator" to lead project

Version 2: MIT, 1983

- Richard Stallman was respected MIT "hacker"
 Author of EMACS editor
- Since 1984 Stallman Coordinates GNU project
 - GNU is Not Unix (recursive name)
 - Intended to produce
- open, free version of Unix
- "Free as in speech... not beer"

GNU's Free Software Definition

- The freedom to run the program, for any purpose (freedom 0).
- The freedom to study how the program works, and adapt it to your needs (freedom 1). Access to the source code is a precondition for this.
- The freedom to redistribute copies so you can help your neighbor (freedom 2).
- The freedom to improve the program, and release your improvements to the public, so that the whole community benefits (freedom 3). Access to the source code is a precondition for this.

The Hacker Ethic

- Access to computers... unlimited and total
- All information should be free
- Mistrust authority promote decentralization
- Hackers should be judged by their hacking...
- You can create beauty and art on a computer
- Computers can change your life for the better From ch. 2 of Hackers, by Steven Levy,

Summary of 3 Conventional Views

- Stress
 - Hacker culture and ideological commitments
 - Unpaid enthusiast virtuosos
 - Charismatic individuals
 - Novel licensing arrangements
- All about operating systems

A New Origin Story

- Different in all respects
 - Scientific software libraries
 - 1950s to 1970s
 - No concern with licensing arrangements
 - Motivated by pragmatic commercial interests (1950s)
 Avoidance of duplicated efforts on generic programs
 - Free resources for areas of proprietary interests
 - Motivated by scientific norms (1970s)
 - Free exchange of data
 - Desire for publicationFaith in peer review

2: Mathematical Software and Open Source

Scientific Computing

- Original function of early machines
 - Harvard Mark I, ENIAC
 - Source of the term "computer"
- Many applications are concerned with modeling natural or man made systems
 - Hydrogen bomb physics
 - Fluid Dynamics of air for aerospace
 - Celestial mechanics for space navigation

Early Needs

- Initially: very basic assembly language subroutines
 - Multiplication, square root, binary to decimal, floating point simulation, etc.
- FORTRAN (1956) covers basics, but plenty of challenges left
 - Each computer center is likely to need routines for
 - Linear algebra and matrix manipulation
 - Ordinary and Partial Differential Equation solvers
 Special and Elementary functions
 - Special and Elementary function
 Curve fitting and least squares
 - Fast Fourier Transformation

Mathematic Challenges

- Mathematical techniques largely independent of disciplinary boundaries
- Most solutions are numerical using approximation techniques
 - As opposed to symbolic
- Computer opens many new possibilities
 Computers thousands of times faster
 - Exposes limitations of existing mathematical methods

Issues - Mathematical

- Different numerical approximations suited to different problems
 - May be very slow
 - May give meaningless or inaccurate result
 - Problems may be under very specific conditions
- Newer, better methods may be more complex or highly specialized
 - Package in software for easy consumption
 - Disseminate formerly tacit knowledge between sites

2a: SHARE and Mathematical Software

IBM 701/704/709

- Large, "first generation" machines of 1950s Worth approximately \$2
 - million
- Designed for technical computation Early users dominated by
 - Southern California aerospace firms
 - Cold war context
- Many employees for each computer installation

704 at LLNL, 1956

SHARE IBM User Group

- SHARE founded 1956
 - Cooperative group for users of large IBM computers Discussions begin among IBM 701 users
 - SHARE represents "large" IBM scientific machine users
 - Representatives from each installation (52 by end of 1956)
 - Intended to "share" programs, expertise, experiences
 - and best practices
 - Lobbying of IBM to alter machines or policies

SHARE Practices Standardization needed to share code and INCE A (Adopted February 05, 1995 at DBARE X. Rebolied in report of Dia Committee passed out to available in Mashington. Flanzed to be relistry in SED very shortly.) 15d. No. 2 Hinary Card. (Column Honary is Standard)

- Standardize machine configuration
 - Setting of switches, control panels, etc
- Standardize system software

practices

- Assembler and utility programs (not supplied by IBM)
- Leads to big project to create "Share Operating System"

- Bits_Do.2.
 Henry flow/Goldmannel

 Bits_Do.2.
 How Forwark

 Bits_Do.2.
 Bits and Huture. (Integreted as easy of all of 11)

 Bits_Do.2.
 Bits How Forwark

 Bits_Do.2.
 How For How Tope. (Including 1/# stees instanters)

 Bits_Do.2.
 How For How Tope. (Including 1/# stees instanters)

 Bits_Do.2.
 How For How Tope. (Including 1/# stees instanters)

 Bits_Do.2.
 How For How Tope. (Including 1/# stees instanters)

 Bits_Do.2.
 How For How Tope. (Including 1/# stees instanters)

SSD

- Mechanism for communication between meetings
 - Mailing of large bundles of assorted materials
 Committee reports
 - Drafts for comments
 - Letters, inquiries and responses
 - Including bug reports
- Also microfilms of source code for programs

Packaging of Mathematics

- Many routines are for mathematical functions
 - Substantial duplication and overlap in contributed routines
 - Quality issues
- Importance of tacit knowledge
 - Limits use, causes support issues
 - "Black boxing" of mathematical procedures

SHARE Labor

- Installation reps are senior figures
 - Responsible for design and specification
 - Commit employees of their firms to develop code
- Economy of effort in developing generic routines
 - Driven by economics save time and money
 - No proprietary advantage in cosine routine

SHARE Structure

- Committees to manage particular projects
 - Mathematical software is one important area
 - Subcommittees for particular projects

SHARE and the Four Freedoms

- Freedom to run YES
- Freedom to study and adapt source code -YES
- Freedom to redistribute YES
 Pretty much all 704/9/90 were members
- Freedom to improve and release to the public – YES

Challenges to SHARE

- Problems develop in open source model
- See Akera "The Limits of Voluntarism", T&C, 2001
 - Following problems with the "SHARE Operating System" project the writing of system software migrates to IBM
- But mathematical software largely doesn't SHARE is main distribution mechanism until early 1970s
 - Large labs rely on own code libraries

What Happened Next

You might expect

- Triumph of commercial software
- Big picture
 - IBM puts much more effort into software from mid-1960s
 - Emergence of independent market for packaged software in early 1970s
- But not quite the story here

Three Successors in 1970s

- Computer drives rapid development in numerical analysis as mathematical discipline
- Successful models emerge for Peer-reviewed program publication
 - Share Numerical Analysis Project ACM Transactions on Mathematical Software
 - Specialized free packages from expert teams
 - FISPACK LINPACK, etc
- Commercial software libraries 3
 - NAG
 - IMSL 2

2

SHARE Numerical Analysis Project

- Attempt in 1960s to peer review mathematical routines
 - Volunteer committee with IBM support
 - Limited success
 - Reviewing standards lacking and commitment uneven
 - Too many routines to review

Peer Review of Programs Common idea within this community Simple application of scientific journal processes Submitted routines are evaluated for

- Quality of documentation
 Novelty and superiority over existing ones
- Performance
- Mathematical stability
- Two or three independent expert opinions solicited
 - Response is either Accept
 - RejectRevise and Resubmit
- Contrast with Raymond's open source model

ACM TOMs

- Transactions on Mathematical Software
- Publication venue for peer reviewed mathematical software
 - Started 1975 by John Rice
 - Program source code distributed via microfiche, card and tape
- Surprisingly successful

EISPACK

- Computes eigenvalues and eigenvectors of matrices
 - Released 1972
 - Standard routines in this area for a decade
- Project performed at Argonne National Lab
 - Dozens of specialized packages produced within the labs during this era
- Many other "PACKS" follow
 - LINPACK, LAPACK, MUDPACK, FISHPACK, FUNPACK

EISPACK Development Methodology

- Very small team of contributors
 - Remains small for LINPACK follow-on project
- Debugging mostly done in small groups
 - Prior to release
 - Don't expect much insight from ordinary users
 No expectation of code fix submission
 - Relationships cultivated with computer center staff
 Create closed network of test sites
- Three major releases
 - Cycle repeated

SSP

- First formal and supported numerical library from IBM
 - Bundled with IBM 360 series
 Developed in IBM Boeblingen circa 1965?
 - Successor packages are sold commercially in 1970s. PL-Math, SL-Math
- SHARE people express quality concerns
- Never particularly successful
 - Main manager later founds commercial IMSL library company

NAG & IMSL

- Comprehensive, commercial libraries
 - Both launched around 1972
 - Rapidly ported to multiple platforms
 - Numerical and statistical coverage
- Sold on annual subscription basis
 - Documented
 - Supported
 - Tested

Blend of academic and commercial

- Much crossover within community
- Academic backgrounds of founders
- Advisory boards of academics
- Blending of Commercial and Open
 - LINPACK and EISPACK code used in commercial libraries
 - Most NAG code is initially contributed by academics and external groups
 - Some NAG/IMSL contribution back into free projects

3: Ponderings

Commercial Origins of Open Source Practices in 1950s

- To recap, by 1956 we already have
 All formal characteristics of "free" software
 - Many practices of modern open source development
- But not the ideology of free software
 - Seen as pragmatic, economically driven sharing

Shows need for Separation of Ideology and Practice

- Open source practices are older, more widespread than open source movement, so...
 - How important is the ideology?
 - Is selective use open source by big firms (IBM etc) the exception or the rule?
- How important are scientific norms to open source practices?
 - Publication and sharing of data
 - Goes back to 17th century gentlemen

Importance of Scientific Norms in Mathematical Software in 1970s

- Same authors contribute code to open and commercial libraries
 - Though many express general idea that software should be freely available
 Especially if publicly funded
- Scientists & mathematicians want to publish
 Pragmatic desire to get code to users
 - Cultural norm of free sharing of results
 - Hard to get tenure or credit without reviewed publication