
Reconsidering the Stored-Program
Concept

Thomas Haigh
University of Wisconsin–Milwaukee

Mark Priestley

Crispin Rope

The first in a three-part series appearing in IEEE Annals, this article gives
a historical explanation of the endemic confusion surrounding the
stored-program concept. After a detailed investigation of the history of
this idea, the authors propose three more precisely defined alternatives
to capture specific aspects of the new approach to computing
introduced in 1945 by John von Neumann and his collaborators.

It is a truth universally agreed that implemen-
tation of the “stored program concept” in the
late 1940s was the most important dividing
line in computer history, separating modern
computers from their less evolved predeces-
sors. Yet, as Doron Swade recently noted, we
do not really agree on why this should be the
case. For years he “assumed that the signifi-
cance of the stored program must be self-
evident” and attributed his own confusion to
“a deficiency of understanding” or to “some
lack” in his computer science education,
until finally he “became bold and began
asking” among computer historians and pio-
neers what it actually was. Their answers were
“all different,” with the question of whether
“the primary benefit was one of principle or
practice frustratingly blurred.” Swade con-
cluded that,

There was one feature of all the responses

about which there was complete agreement:

no one challenged the status of the stored pro-

gram as the defining feature of the modern

digital electronic computer. . .. While the rea-

sons given for this were different, none dis-

counted its seminal significance. But it seems

that we struggle when required to articulate its

significance in simple terms and the apparent

mix of principle and practice frustrates

clarity.1

In this article, we respond by historicizing
the “stored program” and “stored program

concept.” Historians almost invariably point
to a single document as the first publication
to describe the concept and as the direct
source of inspiration for the architecture of
subsequent computer projects. That docu-
ment is the “First Draft of a Report on the
EDVAC” (hereafter simply the First Draft), cir-
culated under the name of John von Neu-
mann in 1945.2 Although the true balance of
credit for the ideas contained in this docu-
ment has been widely and heatedly debated,
its central importance to the development
modern computing has not.3

We look at initial conceptions of the
advantages and crucial features of the new
approach to computer design put forward in
the First Draft, which scholars treat as the first
and most influential statement of the con-
cept. We also identify the origins of the
phrase “stored program,” which came some
years later, and its extension by early com-
puter historians to the “stored program
concept.”

Having shown that this historical evolu-
tion left the terms hopelessly overloaded
with contradictory meanings, to which
Swade’s confusion was an appropriate and
insightful response, we return to the text of
the First Draft to identify three distinct but
intertwined clusters of influential ideas in the
report: the modern code paradigm, the von
Neumann architecture paradigm, and the
EDVAC hardware paradigm. These were
sometimes implemented independently in

4 IEEE Annals of the History of Computing Published by the IEEE Computer Society 1058-6180/14/$31.00 �c 2014 IEEE

the machines of the 1940s, and although all
three were standard features of computers of
the mid-1950s, their fates have subsequently
diverged again. We believe that reliance by
historians on the term “stored program con-
cept” as shorthand for the content of the
entire 1945 EDVAC design has done more to
hurt our understanding than to help it.

Our own attention turned to this question
as we investigated modifications made to
ENIAC in early 1948 by a team working
closely with John von Neumann. These mod-
ifications incorporated key elements of the
new approach to computer design and pro-
gramming associated with EDVAC. Thus con-
verted, ENIAC ran a complex program
written in the new style, including condi-
tional branches, data reads from calculated
addresses, and a subroutine called from more
than one point in the code. This program was
developed using the methodology and flow
diagramming notation described by Herman
Goldstine and von Neumann in their seminal
series of reports on “Planning and Coding of
Problems for an Electronic Computing
Instrument” issued around this time.4

Dispelling some previous confusion, we
have established that all of this was com-
pleted before Manchester University’s “Baby”
(known more formally as the Small-Scale
Experimental Machine) executed what is usu-
ally called the world’s first stored program in
the summer of the same year. It would be
well over a year until EDSAC became the first
purpose-built stored-program computer to
enter regular operation and run programs of
complexity comparable to ENIAC’s. ENIAC
still differed from purpose-built, full-scale
stored program computers in several impor-
tant ways. In particular, its electronic storage
remained rather small, and program instruc-
tions were stored along with constant data in
a high-speed read-only memory.5 Should
ENIAC therefore be considered the first
operational stored-program computer? Well,
it all depends on what we mean by “stored
program.” So before returning to ENIAC in
the next article in this series, we will clarify
the ideas associated with this term and the
process by which they evolved.

To understand the role played by the First
Draft in the subsequent development of com-
puting, we are relying on the notion of a
“paradigm” introduced by historian and phi-
losopher of science Thomas Kuhn in his clas-
sic Structure of Scientific Revolutions.6 Kuhn
believed that the most fundamental sense of
paradigm, the seed around which mighty

scientific communities grew, was an exem-
plary technical accomplishment reflecting a
new approach—the “concrete” paradigm. In
its initial formulation it might be clumsy or
incomplete, but it held sufficient promise to
attract others to build on its model to extend
it and apply it to new kinds of problem. The
original paradigmatic accomplishment was,
in Kuhn’s term, “articulated” through this
later work to become something almost
unrecognizable. For example, later genera-
tions of scientists learned Newton’s laws of
motion in a form (and using a version of cal-
culus) quite different from those familiar to
Newton himself.

Focusing on the First Draft as a paradigm
thus steers us toward two important issues.
The first is that this core sense of paradigm
helps us to understand the enormous power
that the First Draft exerted over the subse-
quent development of computing. The sec-
ond, less obvious, is that the First Draft only
became a paradigm retroactively. In 1945 it
was just a document. As others took up its
ideas, implemented them, and extended
them, it came to function as a paradigm. By
the 1950s, its paradigmatic authority was
becoming clear. Some of the ideas contained
within it were discarded, some were reformu-
lated, and others were added. The treatment
of its ideas in textbooks and papers has con-
tinued to evolve. Understanding what was so
originally so important about the First Draft
requires us to strip away some of these later
ideas and to ground our analysis in the real-
ities of 1940s computer practice.

What Did von Neumann Mean By
“Stored Program”?
That turns out to be a trick question, unfortu-
nately. The “First Draft of a Report on the
EDVAC” does not, despite the role it has been
assigned in later historical work, function
well as a standards document to rigorously
define the concept of “stored program.” To
begin with, the word “program” never
appears in the draft. Von Neumann consis-
tently preferred “code” to “program” and
wrote of “memory” rather than “storage.”
Indeed, if someone with no prior exposure to
the topic was handed this document and
asked to encapsulate its big idea about the
handling of instructions in a single phrase, he
or she would be much more likely to derive
“remembered code” than “stored program.”

Our current attachment to the term
“stored program” as a description for com-
puters built along lines proposed for EDVAC

5January–March 2014

thus needs some historical explanation. Read
literally, the term conveys very little. Any
program that can be executed by a computer
must be stored in some form or other. The
First Draft itself observed that “instructions
must be given in some form which the device
can sense: Punched into a system of punch-
cards or on teletype tape, magnetically
impressed on steel tape or wire, photographi-
cally impressed on motion picture film, wired
into one or more fixed or exchangeable plug-
boards—this list being by no means necessa-
rily complete.”7

The report was a speculative and argumen-
tative description of the design of a particular
machine, not an abstract description of a
new class of machines. It offered great detail
in some areas and very little in others. In
other words, it is only when armed with the
knowledge of later developments that we
might hope to identify a specific paradigm in
there.

It is indeed true that the First Draft argued
for the collocation of code and data, often
taken to be the essence of the stored-program
concept, although von Neumann’s language
introducing the idea was uncharacteristically
tentative: “While it appeared that various
parts of this memory have to perform func-
tions which differ somewhat in their pur-
pose, it is nevertheless tempting to treat the
entire memory as one organ, and to have its
parts as interchangeable as possible.”8 Von
Neumann believed that the data require-
ments of the problems he was interested in
were large enough to require a memory of
unprecedented size and that the program
code would, by comparison, be quite small.
Using one set of mechanisms to handle both
would simplify EDVAC.

Two intertwined histories are of interest
here. The first is the process by which the
many different ideas explored in the First
Draft and related documents were reduced to
a shared understanding that the storage of
code and data in a shared memory was the
single crucial shift setting the late-1940s gen-
eration of computers aside from their prede-
cessors. This has received little attention
from historians. The second is the process by
which the specific term “stored program”
was attached to this concept. That has
received no attention whatsoever.

Early Understanding of the
EDVAC Design
Some of the earliest and most perceptive
comments on the essential features of the

new breed of computers came from J. Presper
Eckert and John Mauchly. As well as design-
ing ENIAC, they had created at least some of
the ideas included in the First Draft and in
1946 founded a company to commercialize a
similar design. In 1946 a summer school was
held at the University of Pennsylvania, then
housing both ENIAC and the project to build
the EDVAC. Historians have credited the
event as a crucial vector for the spread of the
stored-program concept. But what made
EDVAC so appealing as a model?

During his lecture, Eckert retraced for the
audience the process he and his colleagues
had gone through to design the EDVAC as a
reaction to the shortcomings of ENIAC. His
argument for internal program storage was
pragmatic. It would reduce set up time, as “in
the EDVAC there will be no cords, no plugs,
and few switches. We are simply going to use
the memory to hold the information elec-
tronically and to feed those pieces of infor-
mation which relate to programming from
the memory, into the control circuits in order
to resequence the machine.” ENIAC had used
a vast number of vacuum tubes to create a
writable electronic memory of just 200 deci-
mal digits. This technology could never be
used to create a memory large enough to
store all the data needed for many problems,
let alone programs. He estimated that the
connecting cables, function tables (large
banks of switches originally intended to hold
tables of numerical values to lookup function
values from), and switches of ENIAC effec-
tively held another 7,000 or so digits of pro-
gram and data information. But with a larger,
cheaper memory of the kind offered by his
recent invention of the mercury delay line,
there was no longer any reason to store this
program information separately. Eckert noted
that the ratio between program and data stor-
age varied from problem to problem, so that
combining the two “eliminates for the
designer the problem of attempting to find
the proper balance between the various types
of the memory, and gives the problem to the
user.”9

Memory technologies were, as these com-
ments remind us, the dominant challenge
facing computer builders in the late 1940s.
Discussions of drums, delay lines, Selectrons,
cathode ray tubes, wire recorders, and phos-
phor discs occupied a central place in the first
computing texts and conferences. The suc-
cess or failure of the various teams rushing to
make their computers operational was deter-
mined in large part by their success in

Reconsidering the Stored-Program Concept

6 IEEE Annals of the History of Computing

disciplining unruly cathode ray tube and
delay lines. Avoiding design complexity
meant cheaper, faster construction and
improved reliability.

John W. Mauchly, Eckert’s collaborator,
offered similar sentiments at the Harvard
University symposium held the next year.
The title of his paper, “Preparation of Prob-
lems for EDVAC-Type Machines,” indicates
the kinds of terminology used before “stored
program” gained currency. Mauchly consid-
ered the “fundamental characteristics …
which differ significantly from present
machine design…. [T]hree have a definite
bearing on the handling of problems: (1) an
extensive internal memory; (2) elementary
instructions, few in number, to which the
machine will respond; and (3) ability to store
instructions as well as numerical quantities
in the internal memory and modify instruc-
tions so stored in accordance with other
instructions.” Expanding on the final point,
he noted that,

[I]nstructions are stored in the internal mem-

ory in the same manner as are numerical

quantities, and one set of instructions can be

used to modify another set of instructions.

This is directly related to the finite capacity of

the internal memory and the limited number

of basic operations. . .. The total number of

operations for which instructions must be pro-

vided will usually be exceedingly large, so that

the instruction sequence would be far in

excess of the internal memory capacity. How-

ever, such an instruction sequence is never a

random sequence, and can usually be synthe-

sized from subsequences which frequently

recur.

By providing the necessary subsequences,

which may be utilized as often as desired,

together with a master sequence directing the

use of these subsequences, compact and

easily set up instructions for very complex

problems can be achieved. Even greater

powers are conferred, however, by the ability

to use one instruction to modify another. . ..

[This] transfers to the machine a burden

which would otherwise fall upon the opera-

tor—the burden of explicitly writing out and

coding the successive variations which are to

be used.10

In his 1949 book Calculating Instruments
and Machines, the eminent British mathema-
tician Douglas Hartree treated ENIAC, Har-
vard Mark I, and SSEC as “The First Stage of

Development” of “Large Automatic Digital
Machines.” Hartree concluded that,

[I]t seems very improbable that any of them

will be duplicated. The machines of the future

will be considerably different in principle and

appearance; smaller and simpler, with . . . tubes

and relays numbered in thousands rather than

tens of thousands of the machines considered

in this chapter, faster, more versatile and easier

to code for and to operate. Those at present

projected or under construction are different

enough to be regarded as forming a second

stage of development.11

Taken together, the observations of Eckert,
Mauchley, and Hartree help us to understand
the 1945 EDVAC design as a reaction among
the Moore School team against the complex-
ity that had plagued ENIAC. The vacuum
tubes composing the logic units of early elec-
tronic computers were bulky and unreliable
and posed a significant risk of fire. ENIAC
included almost 18,000 such tubes. EDVAC-
type computers of significantly greater power
and flexibility reduced this number by a fac-
tor of about five, just as Hartree had prom-
ised. EDSAC had around 3,000 tubes, as did
the Institute for Advanced Studies computer.
The Manchester Mark 1 had around 1,300
and the Pilot ACE just 800.12

The lion’s share of this reduction came
from avoiding ENIAC’s use of 11,000 vacuum
tubes for its cramped high-speed memory.
However, the elimination of hardware did
not stop there. Each of ENIAC’s accumulators
included circuitry to perform additions.
These duplicate circuits were replaced by a
single central adder. As noted in the First
Draft, “The device should be as simple as
possible, that is, contain as few elements as
possible. This can be achieved by never per-
forming two operations simultaneously.”13

Von Neumann admitted that “up to now all
thinking about high speed digital computing
devices has tended in the opposite
direction,” but he felt this justified applying
his new “uncompromising solution … as
completely as possible” until experience
might prove that compromise was necessary.

In conclusion, computing experts of the
late 1940s spoke of “EDVAC-type” computers
rather than stored-program computers,
reflecting the role of the First Draft report as a
paradigmatic exemplar. Contemporary dis-
cussion focused on the novelty of electronic
machines with large high-speed memories,

7January–March 2014

new programming methods, and relatively
simple logic units. Experts did come, quite
quickly, to identify the storage of programs
and data in a large electronic memory as one
of several central innovations of EDVAC-like
machines. Some also noted the benefits of
allowing programs to modify themselves dur-
ing execution. However the interchangeabil-
ity of programs and data was a single
contribution to a much larger and more radi-
cal simplicity of design in comparison with
machines such as ENIAC and SSEC.

Origins of the Term “Stored Program”
The proceedings of the Moore School lec-
tures, issued in 1948, did not include the
phrase “stored program.”14 Neither could we
find it in the proceedings of a conference
held at Harvard in 1947, the introductory
books published by Hartree in 1947 and
1949, the proceedings of the Cambridge Uni-
versity computer conference held in 1949, or
the ERA guide published in 1950.15 In fact,
we have been unable to locate the phrase in
any publication of the 1940s.

During the second half of the 1940s,
authors used a variety of terms to describe the
new breed of computers. The most common
was “digital automatic computer.” “Digital”
separated them from analog machines such
as differential analyzers. “Automatic” made it
clear that machines, rather than people, were
being referred to. “Electronic,” another popu-
lar adjective, set the new high-speed
machines apart from their electromechanical
ancestors. In these terms, the distinction
between computers such as ENIAC or IBM’s
SSEC and computers patterned after EDVAC
was not always apparent.

So where did “stored program” actually
come from, and why did it eventually replace
alternatives such as “EDVAC-type machine”
as a description of the new kind of computer?
The earliest use we have been able to establish
is in 1949, within the small team at IBM’s
Poughkeepsie facility, which under the direc-
tion of Nathaniel Rochester, produced IBM’s
first EDVAC-type computer, usually called
the Test Assembly. This experimental system
was built around the firm’s first electronic cal-
culator, its 604 Electronic Calculating Punch,
which became the arithmetic unit of a
lashed-up computer. It was joined to a new
control unit, a cathode ray tube memory, and
a magnetic drum.

The resulting machine had two potential
programming mechanisms, as the 604 already
included a plug board able to hold a program

of up to 60 instructions. To distinguish
between this wired program and the more
complex and flexible sequence of instructions
held in the 250-word electronic memory or
on the drum, the team began to call the latter
the “stored program.” A proposal written by
Rochester in 1949 noted that the cost of the
plug board and the work required to program
it became impractical once a certain level of
complexity had been reached. Thus, “the best
solution to this difficulty is to introduce the
calculating program into the machine on a
deck of tabulating cards and to retain it, along
with the numerical data, in the storage sec-
tion of the calculator.”16 The report was titled
“A Calculator Using Electrostatic Storage and
a Stored Program.”

Rochester and his collaborators took the
term “stored program” with them as they
moved from designing the Test Assembly to
its experimental successor, the Tape Process-
ing Machine, and eventually to the IBM 701
(the firm’s first computer product). In later
usage, this discussion of digital computers
with “stored program control” collapsed sim-
ply into discussion of “stored-program com-
puters.” An early example comes in a 1951
paper presented at the Joint Computer Con-
ference by two IBM employees describing its
Card Programmed Calculator, a product cou-
pling the 604 with a card-driven control unit.
The authors praised the flexibility and speed
of this approach versus a “stored program
machine” for which “it is usually necessary
to economize on the length of sequences [of
instructions], on account of the limited stor-
age available.”17

In 1953 the term was sufficiently well
known within the small world of electronic
computer users that Willis Ware of the Rand
Corporation could write simply of “what we
know now as the ‘stored program machine’”
in a report on the “History and Devel-
opment” of von Neumann’s computer proj-
ect.18 It was not enormously common, but it
did occur with reasonable frequency in the
conference proceedings of the 1950s, particu-
larly in presentations by IBM staff. However,
“stored program” did not seem to be a part of
the firm’s carefully controlled official vocabu-
lary: we have not come across it in documen-
tation or advertisements for IBM’s early
computers.

“Stored Program” Becomes a
Historical Term
After establishing this limited beach head in
the 1950s, the phrase “stored program” does

Reconsidering the Stored-Program Concept

8 IEEE Annals of the History of Computing

not appear to have made significant advances
in the 1960s, probably because all digital
computers of the era executed their programs
from memory rather than reading them one
instruction at a time from an external source.
In the title of a book or article, the term
“digital computer” was understood to imply
stored-program control.

Only with the rise of interest in the history
of computing did it again become necessary
to distinguish stored-program computers
from other kinds of digital computers. Dis-
cussions of “stored program” enjoyed some-
thing of a renaissance in the 1970s,
beginning with its prominent use by com-
puter pioneer Herman Goldstine in his book,
The Computer from Pascal to von Neumann.19

This remained the most important overview
of computing history for many years, used as
a textbook into the 1990s. Goldstine, then an
IBM fellow, helped to establish this relatively
obscure technical term at the center of the
growing historical discourse.

Eminent computer scientists and their
professional organizations conducted most
of the initial work in this field. Their main
focus was the origin of computer technology,
and a great deal of effort was devoted to docu-
menting facts about early computers, both
famous and obscure. One question loomed
above all others: what was the first computer?
Among scholarly historians, in contrast, the
question of the “first computer” is no longer
seen as legitimate. The answer to the ques-
tion depends almost entirely on how one
defines “computer.” Introducing a confer-
ence devoted to early computers, Michael R.
Williams suggested that his colleagues “not
use the word ‘first’—there is more than
enough glory in the creation of the modern
computer to satisfy all of the early pioneers,
most of whom are no longer in a position to
care anyway.”20 In the same address, Wil-
liams noted that, “If you add enough adjec-
tives to a description you can always claim
your own favorite. For example ENIAC is
often claimed to be the ‘first electronic, gen-
eral purpose, large scale, digital computer’
and you certainly have to add all those adjec-
tives before you have a correct statement.”20

This consensus on the appropriate title for
each machine is relatively recent, reflecting a
kind of truce reached during the 1980s. The
separation of “stored program computer”
from “general purpose computer” was ini-
tially contested. Arthur and Alice Burks, in a
substantial 1981 article documenting ENIAC,
had attempted to precisely define the

capabilities of a general-purpose computer. In
response Brian Randall, an early leader of his-
torical efforts in the field, suggested that
ENIAC could not be considered general pur-
pose because it lacked the crucial feature of
being “able to select among items held in its
read-write memory, based on results so far
computed,” which was “one of the most sig-
nificant and distinct characteristics of so-
called stored-program computers.”21 In other
words, to Randell only an EDVAC-type com-
puter could be considered general purpose.

Assigning the Firsts
After historians collectively withdrew the
prize of “first computer” without making an
award, the most dazzling of the remaining
trophies bore the legend “first stored program
computer.” This put machines like ENIAC,
programmed with wires and switches, or the
Harvard Mark I calculator, which read its
instructions one a time from a paper tape, on
the wrong side of the historical divide. The
disagreements noted by Swade were not a
barrier to acceptance of this distinction, and
may even have been an advantage. The prac-
tical purpose of these distinctions was to
establish a truce between advocates for a
handful of different computers. With so few
machines to distinguish between, the com-
munity could agree that, for example, the
Mark I was not a stored-program computer
and EDSAC was, without having to reach
consensus on exactly what permutation of
the many differences between them was nec-
essary and sufficient to accord this status to
the later machine. Of course, the new con-
sensus did imply that the biggest dividing
line between the modern computer and its
antecedents was in its ability to load a data
sequence into memory and execute it as a
program, but the extent to which this was
seen as the only significant difference or as
one aspect of a much broader shift could and
did vary wildly. This explains the disagree-
ments Swade encountered as to the signifi-
cance of the stored program.

The figurative trophy for “first stored pro-
gram computer” was metaphorically cut in
half and split between two British computers:
Cambridge University’s EDSAC and Man-
chester University’s Baby. The Baby, which
ran its first program on 21 June 1948, was
only a small-scale prototype. Its primary
function was to test the workability of a novel
method of using a cathode ray tube for data
storage. It was put together quickly with the
most modest configuration possible—just

9January–March 2014

eight instructions (not including add) and a
single memory tube holding 32 words of
memory. It ran several test programs to prove
the reliability of the memory but never
tackled a program of any practical use before
it was disassembled and its parts were rede-
ployed build a full-sized computer.

In contrast EDSAC was, by the standards
of its day, a powerful computer. After it ran its
first programs on 6 May 1949, it remained in
service until 1958. Its creators built the first
subroutine library, wrote the first program-
ming textbook, and pioneered several key
ideas in systems programming including the
assembler. EDSAC was, like ENIAC, applied to
numerous scientific and mathematical prob-
lems. In their authoritative overview of the
history of computing, Martin Campbell-Kelly
and William Aspray wrote that, with the first
successful run of EDSAC in May 1949, “[t]he
world’s first practical stored-program com-
puter had come to life, and with it the dawn
of the computer age.”22

The Stored-Program Concept Meets
Computer Science
The resurgence of the stored-program con-
cept, now as a concept for historical dis-
cussion, went along with its increasing
identification with foundational ideas from
the new discipline of computer science. In
recent decades, the manipulation of programs
and data interchangeably in the same mem-
ory units has increasingly been taken as the
key defining characteristic of the stored-pro-
gram computer, and thus of modern com-
puters. This was a third stage in the evolution
of the term “stored program.” We saw that
this term originally described a type of pro-
gram but was soon used to define a class of
“stored program computers.” Historical dis-
cussion extended this further with the impli-
cation that a “stored program concept” was
the dividing line between these machines,
the first true computers, and their predeces-
sors. Thus the complex legacy of the EDVAC
design described in the First Draft was rhetori-
cally condensed to a single idea. In turn, the
stored-program concept and general-purpose
computer have sometimes conflated with the
more formal concept of a computer being
Turing complete or “universal” if equipped
with a memory of infinite size. This has led
some to claim that Turing was the true inven-
tor of the stored-program computer!23

To cite just three of many recent examples
of this conventional wisdom: the Wikipedia
page on “stored program computer” currently

defines it as “one which stores program
instructions in electronic memory. Often the
definition is extended with the requirement
that the treatment of programs and data in
memory be interchangeable… [t]he stored
program computer idea can be traced back to
the 1936 theoretical concept of a universal
Turing machine.”24 In his recent Computing: A
Concise History, Paul Ceruzzi defined stored-
program computers as storing “both their
instructions—the programs—and the data on
which those instructions operate in the same
physical memory device” and suggested that
this “extended Turing’s ideas into the design
of practical machinery.”25 Finally, Swade him-
self retreated from the endearingly bold con-
fession of confusion we quoted earlier to
conclude that “the internal stored program …
is the practical realization of Turing universal-
ity” and thus conferred “plasticity of function,
which in large part accounts for the remark-
able proliferation of computers and com-
puter-like artifacts.”26

Arguing about the influence Turing might
or might not have exerted over von Neu-
mann has become an enjoyable parlor game
for historians of computing. That question
aside, one will find few references to Turing’s
theoretical work among the discussions of
those building computers in the 1940s.27

Some historians have suggested that the ret-
roactive embrace of Turing as a foundation
for this practical work is tied to the emphasis
within computer science, as it emerged as a
distinct discipline during the late 1950s and
1960s, on abstract models of computation.28

In later discussions, the advantages of stored-
program machines were often justified
according to the theoretical concerns of aca-
demic computer scientists rather than the
pragmatic issues of primary importance to
their designers.

Self-Modifying Code
One of the major theoretical attractions of
storing code and data in the same writable
memory is that a program can manipulate its
own code as it is being executed, using
the same mechanisms with which it manipu-
lates other kinds of data. On one level, this
emphasis on code modification is startling.
Writing programs that modify their own
code at runtime has been seen for decades
as a serious breach of programming etiquette.
The capability is sacrificed in most high-level
languages and thus has become increas-
ingly remote from mainstream program-
ming practice.

Reconsidering the Stored-Program Concept

10 IEEE Annals of the History of Computing

Instruction modification would have been
a common operation in programs written for
the EDVAC described in the First Draft. It was
the only way to terminate a loop, perform a
conditional branch, or alter the address from
which an instruction fetched data (for exam-
ple to obtain a value from a different cell
within an array each time a block of code is
looped through).29 What these applications
have in common is that it is not necessary to
alter the operation code itself (for example,
to change a subtract instruction to a jump
instruction) but merely to change the field
within the instruction that specifies the
memory address from which data should be
fetched or to which a jump should be made.

Von Neumann deliberately eliminated the
possibility of a program overwriting itself.
One of the 32 bits in each word of memory
flagged it as holding either program or data.
A transfer operation applied to a data word
would fully overwrite its content. Applied to
an instruction word, the same operation
would overwrite only the address field.30 The
stipulation was dropped from later designs
for EDVAC-like machines, including the
design produced by von Neumann’s own
group at the Institute for Advanced Studies.

We see the reliance placed on address mod-
ification in the 1945 EDVAC design as an
expression of a broader determination to radi-
cally simplify ENIAC’s successor by replacing
ENIAC’s many special-purpose mechanisms
with a small number of general-purpose
mechanisms. ENIAC in its original configura-
tion relied on special hardware to coordinate
loops, including a dedicated “Master Pro-
grammer” unit holding 10 electronic
“steppers” and a set of electronic counters
constituting a special purpose memory inac-
cessible to the rest of the machine. Another
special-purpose control mechanism allowed
switches on other units to repeat operations
up to nine times. Conditional branches were
accomplished with a complex technique
using special adaptors to route numerical data
into program control lines. In the new design,
branching and looping were both accom-
plished with a simple control transfer instruc-
tion. Like many early computers, ENIAC had
included dedicated hardware for table look-
ups. Its function tables were designed to
return the appropriate value of a function
after being sent an “argument” stored in an
accumulator. The argument would change as
the computation continued, and to simplify
the calculation of intermediate values of the
tabulated function using interpolation,

another special feature allowed easy lookup
of neighboring values. In the new paradigm,
the same device was reinterpreted as a gen-
eral-purpose read only memory and the
“argument” became an “address.”

As described in the First Draft, the EDVAC
would have no conditional branch instruc-
tion, no special support for loops, and no
indirect addressing capabilities to read or
write from a different part of a table every
time a loop was executed. All would be
accomplished by explicitly modifying the
address portions of instructions held in mem-
ory. In this regard, the First Draft design for
the EDVAC went too far in its determination
to replace the gothic excess of ENIAC with an
austere minimalism. Early stored-program
computers retained much of its radical sim-
plicity. However, they invariably included
special instructions for conditional branches
(used to terminate loops, among other
things) and the Manchester Mark 1’s addition
of an index register for relative addressing
was widely copied. These features added
slightly to hardware complexity but greatly
reduced the need for self-modifying code and
so made programs easier to write, easier to
debug, smaller, and faster.

Instruction modification is the most dra-
matic example of the way in which later dis-
cussions of the “stored program concept”
required a selective reading of the 1945 First
Draft, one heavily influenced by knowledge
of later developments. Despite the paradig-
matic position of the First Draft, we pick and
choose the features to take seriously from it.
Still, if one accords the First Draft its conven-
tional status as the seminal statement of the
stored-program concept, then unrestricted
code modification is clearly not part of said
concept.31

Code modification ultimately found its
niche as a technique for systems software
rather than for looping, branching, or
addressing. As Alan Bromley once pointed
out, a loader or bootstrap program has to be
able to insert instructions into memory, and
any kind of operating system relies on the
ability to overwrite program code currently
in memory.32 The main practical use of the
capability has therefore been in the develop-
ment of systems software, a concept that did
not exist in 1945.

Defining the “Modern Code
Paradigm”
Within the past few years a new generation of
scholarly historians has turned back to the

11January–March 2014

events of the 1940s with different perspec-
tives and questions. Allan Olley has explored
the claims of the IBM SSEC to be the first
operational stored-program computer.33 Lies-
beth de Mol and Marteen Bullynck have
delved deep into the programming practices
adopted by mathematicians confronted with
the complexity of ENIAC in its original pro-
gramming mode.34 One of us, Mark Priestley,
has broken the stored-program concept
down into a number of distinct innovations,
realized at different points in the 1940s.35 On
balance, however, we feel that the historical
baggage accumulated by the “stored program
concept” means that historians should treat
it with much the same wariness we have
learned to associate with “first computer.”
The time has come to replace it, as an analyti-
cal category, with a set of more specific alter-
natives amenable to clear and precise
definition.

The first of these is the “modern code para-
digm.” We use this new term to describe the
program-related elements of the 1945 First
Draft design that become standard features of
1950s computer design. Some items specified
in the report were ignored or changed by
actual computer designers, while some com-
mon code capabilities of 1950s computers
came from other sources. The first computers
modeled on the EDVAC design differed in
many ways from the design sketched in the
1945 report and from each other. These dif-
ferences included memory size and character-
istics, instruction format, addressing modes,
and treatment of code modification. EDVAC,
as eventually constructed, used a four-address
instruction format. The Pilot ACE did not use
operation codes at all, instead expressing
each instruction using a system of logical
“sources” and “destinations.” Real computers
relied much less heavily on code modifica-
tion than the 1945 design for EDVAC had
done; they supported conditional jumps via
special instructions rather than code modifi-
cation, and within a few years, new address-
ing modes greatly reduced the need for
address modification during data access. The
Manchester computers pioneered this; the
Baby performed all addressing indirectly,
while the Mark 1 is famous for having intro-
duced the index register.

Looking for novel code-related features
from the 1945 First Draft that had become
taken-for-granted features of computers a
decade later therefore illuminates the pro-
cess by which a sprawling, idiosyncratic,
and brilliant document became a dominant

paradigm for the builders of computers. Not
all of the following features were original to
the First Draft, but their packaging together
and integration with the von Neumann
architecture and new hardware technologies
(discussed later) exerted a remarkable in-
fluence.36

1. The program is executed completely auto-
matically. To quote the First Draft,
“[o]nce these instructions are given to
the device, it must be able to carry them
out completely and without any need for
further intelligent human interven-
tion.” This was essential for electronic
machines, whereas human intervention
at branch points had been workable with
slower devices such as the Harvard Mark
I. Of course, operators still had to tend to
input and output devices, and data
might require preprocessing and post-
processing, either manually or with
punched card equipment.

2. The program is written as a single sequence
of instructions. This sequence of instruc-
tions is referred to as EDVAC’s “orders”
in the First Draft, and stored in num-
bered memory locations along with data.
These instructions control all aspects of
the machine’s operations. The same
mechanisms are used to read code and
data. As discussed earlier, the First Draft
specified the explicit demarcation of
memory locations holding code from
those holding data.

3. Each instruction within the program speci-
fies one of a set of atomic operations made
available to the programmer. This was usu-
ally done by beginning the instruction
with one of a small number of operation
codes. Some operation codes are fol-
lowed by argument fields specifying a
memory location with which to work or
other parameters. The First Draft speci-
fied just seven “types of orders” to be
coded with three bits, although four of
these instructions also included an addi-
tional four bits as a kind of parameter to
select one of 10 arithmetic and logic
operation.37 Several order types addi-
tionally incorporated 13-bit addresses.
All together, orders required between 9
and 22 bits to express. Actual machines
usually followed this pattern, typically
merging the “order type” and “opera-
tion” fields from the First Draft so that
each arithmetic or logical operation
received its own numerical order code.

Reconsidering the Stored-Program Concept

12 IEEE Annals of the History of Computing

The main exception comes with Alan
Turing’s ACE design and its derivatives,
which stuck close to the underlying
hardware by coding all instructions as
data transfers between sources and
destinations.

4. The program’s instructions are usually exe-
cuted in a predetermined sequence. Accord-
ing to the First Draft, the machine
“should be instructed, after each order,
where to find the next order that it is to
carry out.” In the EDVAC this was to be
represented implicitly by the sequence
in which they were stored, as in “normal
routine” it “should obey the orders in
the temporal sequence in which they
naturally appear.” It also pointed toward
the idea of a program as a readable text:
“it is usually convenient that the minor
cycles expressing the successive steps in a
sequence of logical instructions should
follow each other automatically.”

5. A program can instruct the computer to
depart from this ordinary sequence and
jump to a different point in the program. As
the First Draft puts it, “[t]here must,
however, be orders available which may
be used at the exceptional occasions
referred to, to instruct CC to transfer its
connection to [i.e. fetch the next instruc-
tion from] any other desired point in M
[memory].” This provided capabilities
such as jumps and subroutine returns.

6. The address on which an instruction acts
can change during the course of the pro-
gram’s execution. That applies to the
source or destination of data for calcula-
tions or the destination of a jump. This
address modification capability was
expressed rather cryptically in the First
Draft, the final sentence of which noted
that when a number was transferred to a
memory location holding an instruction
only the final 13 digits, representing the
address lq, should be overwritten. Actual
computers achieved this instead through
unrestricted code modification and/or
indirect addressing mechanisms. EDVAC
would have relied on address modifica-
tion to make a conditional jump (for
example, to terminate a loop), but the
designers of actual machines recognized
the importance of this operation and
gave it a special instruction.38

A consequence of these features was that
the logical complexity of the program was
limited only by memory space available to

hold instructions and working data. This con-
trasted with the dependence of machines
such as the original ENIAC or SSEC on other
resources such as program lines, plug board
capacity, or number of tape readers as deter-
minants of logical program complexity.

As we explained earlier, we do not view
the modern code paradigm as a new name for
the “stored program concept” or as an idea
encompassing the full scope of meanings
associated with the latter. Indeed, the more
specific scope of the new term is a large part
of its appeal. There were clearly several other
aspects of the First Draft and subsequent pub-
lications by members of von Neumann’s
group in Princeton that had a major influ-
ence on later computer builders.

To adapt an existing term, the second facet
we identify in the First Draft might be called
the “von Neumann architectural paradigm.”
This includes the basic structure of “organs”
found in the report, including the separation
of memory from control and arithmetic.
Associated with this are the serialization of
computation, with only one operation taking
place at a time; the routing of all memory
transfers through the central arithmetic unit;
and the system of special-purpose registers
that serve as source and destination for arith-
metic and logic instructions and provide
a program counter and instruction register
for control purposes. The von Neumann
architecture has in general been more clearly
defined within the technical literature than
has the stored-program concept. One might,
of course, dispute the extent to which it is fair
to attach only von Neumann’s name to these
concepts. That has little bearing on our
argument here, but we note that “EDVAC
architecture paradigm” could serve as an
alternative.

The third major facet might be termed the
“EDVAC hardware paradigm.” The EDVAC
approach appealed to early computer build-
ers in large part as a way of building powerful,
flexible machines using a relatively small
number of components. Influential hardware
ideas in the First Draft include the use of
delay line or storage tube memory, building
logic entirely from electronic components,
representing all quantities in binary, and
keeping special-purpose or duplicate hard-
ware mechanisms to a minimum. (Von Neu-
mann considered that a multiplier would
justify itself but that duplicating adders
or providing hardware for more specialized
functions would provide little benefit.)
These hardware features were not entirely

13January–March 2014

unknown, with the possible exception of
the memory technologies, but collectively
they represented a bold commitment to new
technologies at a time when computing
groups within Harvard, Bell Labs, and IBM
were still drawing up plans for new high-end
machines based on relay storage and paper-
tape control. Thus, we believe that the hard-
ware choices specified for EDVAC in the First
Draft function as a paradigm, in Kuhn’s core
sense of a powerful and tangible exemplar.

These three paradigms have intertwined
early histories but were always at least parti-
ally separable and ultimately diverged. The
machines of the mid-1950s tended to imple-
ment all three. In the 1940s, we can see some
interesting divergences, as machine builders
would pick and choose among them. Alan
Booth’s ARC followed both the modern code
paradigm and the von Neumann architecture
but implemented them using relay hardware.
Martin Campbell-Kelly observed that Booth’s
claimed operation date of 12 May 1948
would make this “the first operational
EDVAC-type stored program computer
(although it was not of course electronic).”39

Alan Turing’s design for the ACE adopted
much of von Neumann’s architecture and fol-
lowed EDVAC’s hardware paradigm but relied
on a different kind of instruction format
with no conventional operation codes. As
Campbell-Kelly noted, “Most computers are
sufficiently alike that a knowledgeable pro-
grammer can get a fairly good appreciation
of a machine from its instruction format and
a table of operation codes. The Pilot ACE is
an exception.”40

Most saliently for our broader project,
ENIAC after its conversion followed the mod-
ern code paradigm with surprising faithful-
ness. The feel and structure of its program
code bears an unmistakable kinship with
those produced for other early machines
sharing the same model. Its use of indirect
addressing to accomplish conditional jumps
and other operations for which EDVAC
would have relied on the direct modification
of stored instructions is a variation of code
style within the paradigm rather than a fun-
damental divergence. ENIAC was all-elec-
tronic but clearly did not reflect other aspects
of the EDVAC hardware paradigm. In particu-
lar, it still had a much higher number of vac-
uum tubes than its immediate successors,
while suffering from an unusually small writ-
able memory.

Our work involves a shift of analytical pri-
orities from theory to practice and from

design to use. Early computing primers
explained EDVAC-type machines to potential
computer users primarily by documenting a
sample instruction set rather than articulat-
ing architectural checklists. From this view-
point, the storage of a program in read-only
or rewritable memory is significant to the
extent that it dictates a major change in pro-
gramming style or imposes arbitrary limits
on computational capabilities or program
complexity.

The paradigmatic influence of these three
aspects of EDVAC diverged again after the
mid-1950s. The relevance of von Neumann’s
EDVAC design as a hardware paradigm faded
first, as transistors and core memories made
vacuum tubes and delay lines obsolete.
The von Neumann architectural paradigm
enjoyed a longer life, although innovations
such as parallel processing, message passing
interfaces, instruction pipelining, direct
memory access by peripherals, stacks, and
addressable registers gradually erased its radi-
cal minimalism. In contrast, the modern
code paradigm has remained largely intact, at
least as a description of the machine language
executed by processors. It was extended and
made more specific in many ways, not the
least by von Neumann’s own 1946 descrip-
tion of the planned structure of the Institute
for Advanced Studies machine.41 It was not,
however, overturned.

By the mid-1950s, it was already becoming
unusual for this code to be written directly by
humans. The computer itself was increas-
ingly relied on to automate aspects of pro-
gram preparation. This was not anticipated
in the First Draft, which said little about pro-
gramming. To some extent, the “Planning
and Coding” reports produced by von Neu-
mann and Goldstine in 1947 and 1948 served
as a model for these developments, as did the
programming textbook issued by Wilkes,
Wheeler, and Gill.42 However, the historical
record does not make it easy to identify any
single dominant approach to programming
itself or to point to any single document as a
paradigmatic statement of programming
practice.

Conclusion
Answering Swade’s challenge has convinced
us that the dominant understanding of what
the stored-program concept is, and of why it
is important, has changed considerably over
time. Having given a historical explanation
of the endemic confusion surrounding the
stored-program concept, we suggested that

Reconsidering the Stored-Program Concept

14 IEEE Annals of the History of Computing

historians returning to the era with an eye to
the investigation of programming practice
and computer use are likely to find the con-
cept unhelpfully imprecise and overloaded
with contradictory associations. Instead, we
suggest the adoption of more precisely
defined alternatives to capture specific
aspects of the new approach to computing
associated with the work of von Neumann
and his collaborators.

The concept of a modern code paradigm
will help us in parts 2 and 3 of this series of
articles to articulate the facet of the broader
EDVAC model that was implemented, for the
first time, when ENIAC was converted to its
new mode of operation. This coding scheme
was not the only important innovation intro-
duced with the First Draft in 1945, but it was
certainly an important one and has perhaps
been the most enduring.

Acknowledgments

This project was generously funded by Mrs.

LD Rope’s Second Charitable Settlement.

Peggy Kidwell made a major contribution by

alerting us to IBM’s early internal use of

“stored program,” which Paul Lasewicz and

Dawn Stanford were then kind enough to

send to us from the IBM Corporate Archives.

William Aspray, Atsushi Akera, Paul Ceruzzi,

David Hemmendinger, and Martin Camp-

bell-Kelly kindly answered our questions on

specific topics and shared their perspectives

on computing in the 1940s. Peter Sachs Col-

lopy aided in the location and retrieval of

archival material. This research benefited

from inclusion in a special session organized

by Gerard Alberts and Liesbeth De Mol for

the 2013 Complexity in Europe Conference

in Milan. Portions of this research were pub-

lished earlier.43

References and Notes

1. D. Swade, “Inventing the User: EDSAC in Con-

text,” The Computer Journal, vol. 54, no. 1,

2011, pp. 143–147.

2. The First Draft was reprinted in J. von Neumann,

“First Draft of a Report on the EDVAC,” IEEE

Annals of the History of Computing, vol. 15, no. 4,

1993, pp. 27–75.

3. Some authors distinguish between “stored

program concept” and “von Neumann

architecture,” attributing the latter to the much

more specific computer design presented in

A.W. Burks, H.H. Goldstine, and J. von Neumann

Preliminary Discussion of the Logical Design of an

Electronic Computing Instrument, Inst. for

Advanced Studies, 1946. The only serious histor-

ical claim that a computer storing its program in

electronic memory was constructed without sig-

nificant influence from the “First Draft” was

made by Jack Copeland with respect to the

Manchester Baby. J. Copeland, Colossus: The

First Electronic Computer, Oxford Univ. Press,

2006, pp. 365, 373. After further research,

Copeland has concluded instead that the design

actually used for the Baby was derived directly

from von Neumann’s reports. B.J. Copeland,

“The Manchester Computer: A Revised History

Part 1: The Memory,” IEEE Annals of the History

of Computing, vol. 33, no. 1, 2011, pp. 4–21.

4. The three reports in the series are reprinted in

W. Aspray and A.W. Burks, Papers of John von

Neumann on Computing and Computer Theory,

MIT Press and Tomash Publishers, 1987.

5. As we will discuss in “Engineering ‘The Miracle

of the ENIAC’: Implementing the Modern Code

Paradigm” in a forthcoming issue of IEEE Annals,

the converted ENIAC also had real advantages

over EDSAC in some areas, including maximum

program length, ease of program writing and

debugging, and input/output performance.

6. T.S. Kuhn, The Structure of Scientific Revolutions,

Univ. of Chicago Press, 1962.

7. Von Neumann, “First Draft of a Report on the

EDVAC,” section 1.2.

8. Von Neumann, “First Draft of a Report on the

EDVAC,” section 2.5.

9. J.P. Eckert, Jr., “A Preview of a Digital Comput-

ing Machine,” The Moore School Lectures: Theory

and Techniques for Design of Electronic Digital

Computers, M. Campbell-Kelly and M. R.

Williams, eds., MIT Press, 1985, pp. 108–126.

Quotations on pp. 112, 114.

10. J.W. Mauchly, “Preparation of Problems for

EDVAC-Type Machines,” Proc. Symp. Large-Scale

Digital Calculating Machinery, 7–10 January

1947, W. Aspray, ed., MIT Press, 1985,

pp. 203–207.

11. D.R. Hartree, Calculating Instruments and

Machines, Univ. of Illinois Press, 1949, p. 88.

12. One can find different tube numbers quoted for

many early computers, and in fact, the exact

number would have fluctuated over their oper-

ating lives as hardware was added and removed.

According to M.H. Weik, “BRL Report 971: A

Survey of Domestic Digital Computing Sys-

tems,” Aberdeen, 1955, ENIAC then had

17,468 tubes, the IAS computer around 3,000,

and SEAC 1,424. S. Lavington, Early British Com-

puters, Digital Press, 1980, reports “800 the-

mionic valves” for the Pilot ACE (p. 44), 3,000

for EDSAC, and as of April 1949, 1,300 for the

15January–March 2014

Manchester Mark 1 (p. 118). The new architec-

ture was so effective in eliminating vacuum

tubes that ENIAC’s total was only ever exceeded

by the immense AN/FSQ-7 computers that

pushed the limits of 1950s computing technol-

ogy for the military SAGE project.

13. Von Neumann, “First Draft of a Report on the

EDVAC,” section 5.6.

14. Campbell-Kelly and Williams, eds.,The Moore

School Lectures.

15. M.R. Williams and M. Campbell-Kelly, eds.,The

Early British Computer Conferences, CBI Reprints,

MIT Press, 1985; D.R. Hartree Calculating

Machines: Recent and Prospective Developments

and Their Impact on Mathematical Physics, Cam-

bridge Univ. Press, 1947; Hartree Calculating

Instruments and Machines; Engineering

Research Associates,High-Speed Computing

Devices, McGraw-Hill, 1950.

16. N. Rochester, “A Calculator Using Electrostatic

Storage and a Stored Program,” 17 May 1949.

From the IBM Corporate Archives, Somers, New

York. Its system of two-digit instruction codes

and three-digit addresses for the stored program

was similar to the format adopted for the con-

verted ENIAC.

17. J.W. Sheldon and L. Tatum, “The IBM Card-

Programmed Electronic Calculator,” Papers and

Discussions Presented at the Dec. 10–12, 1951, Joint

AIEE-IRE Computer Conf., ACM, 1951, pp. 30–36,

quotation on p. 35. However, the phrase “stored

program” was previously used in print at least

once prior to this to describe the MADDIDA as

“controlled by a novel form of stored program”

in an end-of-year summary of developments

in “Electronic Computers” for an engineering

audience. Anonymous, “Radio Progress

During 1950,” Proc. IRE, vol. 39, no. 4, 1951,

pp. 359–396. There are almost certainly other

early published uses waiting to be discovered.

18. W.H. Ware, The History and Development of the

Electronic Computer Project at the Institute for

Advanced Study, Rand Corp., 1953.

19. H.H. Goldstine, The Computer from Pascal to von

Neumann, Princeton Univ. Press, 1972.

20. M.R. Williams, “A Preview of Things to Come:

Some Remarks on the First Generation of Com-

puters,” The First Computers: History and Archi-

tectures, R. Rojas, and U. Hashagen, eds., MIT

Press, 2000, pp. 1–16.

21. Comment by B. Randell, Annals of the History of

Computing, vol. 3, no. 4, 1981, pp. 396–397.

22. M. Campbell-Kelly and W. Aspray, Computer: A

History of the Information Machine, Basic Books,

1996, p. 104.

23. J. Copeland, “What Apple and Microsoft Owe to

Turing,”12 Sept. 2013; www.huffingtonpost. com/

jack-copeland/what-apple-and-microsoft- b

3742114.html. One of us challenges this

notion in T. Haigh, “Actually, Turing Did Not

Invent the Computer,” Comm. ACM, vol. 57,

no. 1, 2014, pp. 36–41.

24. Wikipedia, “Stored-Program Computer,”

http://en.wikipedia.org/wiki/Stored-

program computer.

25. P. Ceruzzi, Computing: A Concise History, MIT

Press, 2012.

26. D. Swade, “Inventing the User: EDSAC in

Context,” p. 146.

27. M. Priestley, A Science of Operations: Machines,

Logic, and the Invention of Programming,

Springer, 2011, argues that a connection

between Turing’s computational model and

actual stored-program computers was only

widely made after 1950.

28. A. Akera, Calculating a Natural World: Scientists,

Engineers, and Computers During the Rise of U.S.

Cold War Research, MIT Press, 2007, p. 120,

suggests that the stress placed by some histori-

cal writers on self-modifying code as a defining

characteristic of the stored-program computer

reflects theoretical concerns that were broadly

articulated only in the 1960s.

29. The portion of the report dealing with program-

ming was never written, but these functions

were all present in ENIAC by 1945 and it is clear

that the EDVAC team would have been con-

cerned with preserving them. A contemporary

report from the group noted that “von Neu-

mann has specified that some order symbols be

capable of modification by deleting a given part

of the order and inserting something else in

place of this part…. so that function tables may

be used, subroutines called in, etc.” J.P. Eckert,

and J.W. Mauchly, “Automatic High Speed

Computing: A Progress Report in the EDVAC.

Report of Work Under Contract No.

W 570 ORD 4926, Supplement No 4. (Plantiff

Exhibit 3540),”30 Sept. 1945, ENIAC Patent

Trial Collection, UPD 8.10, Univ. of Pennsylvania

Archives and Records Center, p. 77. Von Neu-

mann’s sort program of 1945 uses instruction

modification to, in later terminology, dereference

a pointer. D.E. Knuth, “Von Neumann’s First

Computer Program,” ACM Computing Surveys,

vol. 2, no. 4, 1970, pp. 247–260.

30. This has been noted previously be several histor-

ians, including M.D. Godfrey and D.F. Hendry,

“The Computer as von Neumann Planned It,”

IEEE Annals of the History of Computing, vol. 15,

no. 1, 1993, pp. 11–21, and Priestley, A Science

of Operations.

31. Priestley, A Science of Operations, pp. 167–169.

32. A.G. Bromley, Stored Program Concept: The Ori-

gin of the Stored Program Concept, tech. report

274, Basser Dept. of Computer Science, Univ. of

Reconsidering the Stored-Program Concept

16 IEEE Annals of the History of Computing

Sydney, Nov. 1985; cited at http://sydney.

edu.au/engineering/it/research/tr/tr274.pdf.

This ability is also essential to overlay or

paging schemes. Bromley additionally sug-

gested that self modification was necessary for

compilers or assemblers to engage in

“instruction building,” but we do not believe

this is correct in all cases.

33. A. Olley, “Existence Preceded Essence—Meaning

of the Stored Program Concept,” History of

Computing: Learning from the Past, A. Tatnall, ed.,

Springer Verlag, 2010, pp. 169–178.

34. M. Bullynck and L. De Mol, “Setting-Up Early

Computer Programs: D. H. Lehmer’s ENIAC

Computation,” Archive of Mathematical Logic,

vol. 49, 2010, pp. 123–146.

35. Priestley, A Science of Operations, chaps. 6 and 7.

36. The list has some overlap with the characteristics

attributed to the stored-program concept in

P. Ceruzzi, “Crossing the Divide: Architectural

Issues and the Emergence of the Stored Pro-

gram Computer, 1935–1955” IEEE Annals of

the History of Computing, vol. 19, no. 1, 1997,

pp. 5–12, which shows that historians have

invested “stored program” with a great deal

more than the literal ability to store a program.

37. The order code specified in the report has been

presented most clearly in Godfrey and Hendry,

“The Computer as von Neumann Planned It.”

38. One of the 10 arithmetic operations, s, would

take a number from one or the other of the

machine’s arithmetic input registers depending

on a flag set by the results of a previous arith-

metic operation. Among other conditional

operations, this could be used to set the

address stored within an instruction to one of

two possible values according to whether a

particular condition was true or false. Von

Neumann, “First Draft of a Report on the

EDVAC,” section 11.3.

39. M. Campbell-Kelly, “Foundations of Computer

Programming in Britain (1945–1955),” doctoral

thesis, Mathematics and Computer Studies,

Sunderland Polytechnic, 1980, p. 239. We

should note that our new evidence shows ENIAC

had already run a complex Monte Carlo pro-

gram in the modern code paradigm prior to this

date.

40. M. Campbell-Kelly, “Programming the Pilot

ACE: Early Programming Activity at the National

Physical Laboratory” Annals of the History of

Computing, vol. 3, no. 2, 1981, p. 138.

41. Burks, Goldstine, and von Neumann, Preliminary

Discussion of the Logical Design of an Electronic

Computing Instrument.

42. M.V. Wilkes, D.J. Wheeler, and S. Gill, The Prepa-

ration of Programs for an Electronic Digital Com-

puter, Addison-Wesley, 1951.

43. T. Haigh, “ ‘Stored Program Concept’ Consid-

ered Harmful: History and Historiography,” The

Nature of Computation. Logic, Algorithms, Appli-

cations, P. Bonizzoni, V. Brattka, and B. L€owe,

eds., LNCS 7921, Springer-Verlag, 2013,

pp. 241–251.

Thomas Haigh is an associ-

ate professor of information

studies at the University of

Wisconsin–Milwaukee. His

research interests include the

history of computing, espe-

cially from the viewpoints of

labor history, history of tech-

nology, and business history. Haigh has a PhD in

the history and sociology of science from the

University of Pennsylvania. See more at www.

tomandmaria.com/tom. Contact him at thaigh@

computer.org.

Mark Priestley is an inde-

pendent researcher into the

history and philosophy of

computing, with a special in-

terest in the development of

programming. He started his

career as a programmer and

was for many years a lecturer

in software engineering at the University of

Westminster before turning to the history of

computing. Priestley has a PhD in science and

technology studies from University College Lon-

don. His most recent book, A Science of Operations:

Machines, Logic, and the Invention of Programming

(Springer, 2011), explores the coevolution of pro-

gramming methods and machine architecture.

More information is available at http://www.

markpriestley.net. Contact him at m.priestley@

gmail.com.

Crispin Rope has been

interested in ENIAC since

reading Douglas Hartree’s

pamphlet on the machine

from 1947 and has pursued an

avocational interest in its his-

tory for more than a decade.

His earlier work on this topic

has been published in IEEE Annals of the History of

Computing and Resurrection: The Bulletin of the Com-

puter Conservation Society. Contact him at wester-

field@btconnect.com.

17January–March 2014

